Presynaptic regulation of inhibitory synaptic transmission by vasoactive intestinal peptide (VIP) in the mouse suprachiasmatic nucleus
نویسندگان
چکیده
Circadian rhythmicity in mammals is generated by a pair of nuclei in the anterior hypothalamus known as the suprachiasmatic nuclei (SCN), whose neurons express a variety of neuropeptides that are thought to play a vital role in the circadian timing system. To evaluate the influence of VIP on inhibitory synaptic transmission between SCN neurons, we used whole-cell patch-clamp recording in an acute brain slice preparation of mouse SCN. Bath-applied VIP caused a significant increase in the frequency of spontaneous inhibitory postsynaptic currents (sIPSC) in a reversible and dose-dependent manner with no effect on the mean amplitude or kinetic parameters. The effect of VIP was widespread throughout the SCN and observed in both ventrolateral (VL) and dorsomedial (DM) regions. In the presence of tetrodotoxin, VIP increased the frequency of miniature IPSCs without affecting the mean magnitude or kinetic parameters. The magnitude of the enhancement by VIP was significantly larger during subjective day than during the subjective night. Pre-treatment with the VPAC receptor antagonist [Ac-Tyr, D-Phe]-GHRF 1-29 or the selective VPAC2 receptor antagonist PG 99-465 completely blocked the VIP-induced enhancement. The effect of VIP appears to be mediated by a cAMP/PKA-dependent mechanism as forskolin mimics while the PKA antagonist H-89 blocks the observed enhancement of GABA currents. Our data suggest that VIP activates presynaptic VPAC2 receptors to regulate inhibitory synaptic transmission within the SCN and that this effect varies with the circadian cycle.
منابع مشابه
Regulation of inhibitory synaptic transmission by vasoactive intestinal peptide (VIP) in the mouse suprachiasmatic nucleus.
Circadian rhythmicity in mammals is generated by a pair of nuclei in the anterior hypothalamus known as the suprachiasmatic nuclei (SCN), whose neurons express a variety of neuropeptides that are thought to play an important role in the circadian timing system. To evaluate the influence of VIP on inhibitory synaptic transmission between SCN neurons, we used whole cell patch-clamp recording in a...
متن کاملCircadian rhythm in inhibitory synaptic transmission in the mouse suprachiasmatic nucleus.
It is widely accepted that most suprachiasmatic nucleus (SCN) neurons express the neurotransmitter GABA and are likely to use this neurotransmitter to regulate excitability within the SCN. To evaluate the possibility that inhibitory synaptic transmission varies with a circadian rhythm within the mouse SCN, we used whole cell patch-clamp recording in an acute brain slice preparation to record GA...
متن کاملEffects of VPAC2 receptor activation on membrane excitability and GABAergic transmission in subparaventricular zone neurons targeted by suprachiasmatic nucleus.
The hypothalamic suprachiasmatic nucleus (SCN) harbors the master circadian pacemaker. SCN neurons produce the amino acid gamma-aminobutyric acid (GABA) and several peptide molecules for coordination and communication of their circadian rhythms. A subpopulation of SCN cells synthesizes vasoactive intestinal polypeptide (VIP) and provides a dense innervation of the subparaventricular zone (SPZ),...
متن کاملVasoactive intestinal polypeptide (VIP)-expressing neurons in the suprachiasmatic nucleus provide sparse GABAergic outputs to local neurons with circadian regulation occurring distal to the opening of postsynaptic GABAA ionotropic receptors.
GABAergic synaptic transmission plays an important role in resetting and synchronizing circadian rhythms in the suprachiasmatic nucleus (SCN). Although the circadian modulation of intrinsic membrane currents and biochemical signaling have been examined in the SCN, the modulation of specific synaptic pathways within the SCN is unexplored. In addition, little is known about the functional propert...
متن کاملDisrupted circadian rhythms in VIP- and PHI-deficient mice.
The related neuropeptides vasoactive intestinal peptide (VIP) and peptide histidine isoleucine (PHI) are expressed at high levels in the neurons of the suprachiasmatic nucleus (SCN), but their function in the regulation of circadian rhythms is unknown. To study the role of these peptides on the circadian system in vivo, a new mouse model was developed in which both VIP and PHI genes were disrup...
متن کامل